

IPR Series B:4

Rosa Maria Ballardini

Proprietary Software vs FOSS

Challenges with Hybrid Protection Models

IPR Series B ISSN 1458-9494

P.O. Box 4 (Yliopistonkatu 3) IPR Series B
00014 Uni versity of Helsinki ISSN 1458-9494
www.iprinfo.com

Title Proprietary Software vs FOSS
Subtitle Challenges with Hybrid Protection Models

Author(s) Rosa Maria Ballardini

Series, number, ISSN IPR Series, B:4, ISSN 1458-9494
Publication date May 2012

Size 38 pages

Academic thesis Dissertation (1 essay)
Refereed Yes (Spring 2012)
Language English

Publisher IPR University Center

Abstract:

This article analyses the reasons and consequences of the fact that open source
software has become a portion of the technology used by proprietary companies. It
focuses on problems arising from the use of what is designated here as the ‘hybrid’
protection model by commercial companies. The term ‘hybrid’ model refers to a
situation where companies incorporate both open source and proprietary code into
the final software they release to the market. The coexistence of both the proprietary
and the open source software model is essential to promote innovation in the software
field. Due to the different and allegedly conflicting principles under which they are
based, however, the relationship within the two systems might not always be peaceful.
By combining legal theory and empirical research, this paper provides a
comprehensive analysis of the “core” legal challenges surrounding the implementation
of the ‘hybrid’ model in the context of commercial software, and sheds light on the
coping mechanisms companies implement in order to navigate such risks.

Keywords:
copyright, patents, free software, licences

1

Proprietary Software vs FOSS: Challenges with Hybrid Protection
Models

Rosa Maria Ballardini*

Abstract

This article analyses the reasons and consequences of the fact that open source
software has become a portion of the technology used by proprietary companies.
It focuses on problems arising from the use of what is designated here as the ‘hybrid’
protection model by commercial companies. The term ‘hybrid’ model refers to a
situation where companies incorporate both open source and proprietary code into
the final software they release to the market. The coexistence of both the
proprietary and the open source software model is essential to promote innovation
in the software field. Due to the different and allegedly conflicting principles under
which they are based, however, the relationship within the two systems might not
always be peaceful. By combining legal theory and empirical research, this paper
provides a comprehensive analysis of the “core” legal challenges surrounding the
implementation of the ‘hybrid’ model in the context of commercial software, and
sheds light on the coping mechanisms companies implement in order to navigate
such risks.

* Researcher in IP law at HANKEN School of Economics; member of the INNOCENT Graduate School in
IP law, IPR University Centre, University of Helsinki. The author thanks Professor Niklas Bruun, Professor
Marcus Norrgård, Professor Graeme Dinwoodie, LLM Wim Helwegen, and LLM Tanja Liljeström for the
valuable comments. Sincere thanks also go to all the companies and people who kindly contributed to
the empirical part of this research.
© The Author, 2012.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

2

1. INTRODUCTION

This article investigates how firms are developing the relationship between
proprietary (mostly copyright and patents) and open source software
(OSS/FOSS/FLOSS1) under current rules. Specifically, the paper analyses the reasons
and consequences of the fact that open source software has become a portion of
the technology used by proprietary companies.

In recent years, the proprietary and the FOSS protection models have been
increasingly used simultaneously in the same software packages. In fact, almost
every company operating in the software field uses both open source and
proprietary software. One could argue that the coexistence of both the proprietary
and the open source software model is essential to promoting innovation in the
software field. Due to the different and allegedly conflicting principles under which
they are based, however, the relationship within the two systems might not always
be peaceful.

Thus far, research has focused on either FOSS as a phenomenon or proprietary
software individually. Very few studies have investigated the relationship and
interactions between the two. As the tie between open source and proprietary
software models stretches, the need for an in-depth analysis of the ways open
source software affects companies’ IP policies (and vice versa) is becoming clear.

This article primarily aims at investigating problems arising from the use of what is
designated here as the hybrid protection model by commercial companies. The
term hybrid model refers to situations where companies incorporate both open
source and IP protected code into the final proprietary software they release to the
market. Both the respective advantages and disadvantages of proprietary and
open source software are investigated. A practical analysis using company
examples is conducted to expose some of the strategies that firms have used to mix
open source and proprietary software features together. The analysis is based on a
literature review and its intent is to shed light on the major legal challenges involved
with hybrid models.

The second part of the paper composes of an empirical study in the form of a case
study research. A case study analysis was chosen because an in-depth investigation
was needed to provide a holistic understanding of the problems. To this end, the
case study relied upon a qualitative-type of analysis. A quantitative technique
would have probably obscured some of the important information that needed to
be uncovered, such as whether the hybrid protection method is efficient and what
kind of specific problems it involves in practice. The theoretical focus (i.e., the
object) of the study was identified as the problem(s) encountered by commercial
companies that implement hybrid models of protection for their software products.
The subject of the study was portrayed by representative companies operating in

1 Open Source Software (OSS), Free and Open Source Software (FOSS), Free, Libre Open Source
Software (FLOSS), are all slightly different alternatives used to describe software which can be used,
modified and redistributed with little or no restrictions. For the purpose of this paper, however, these
terms will be used interchangeably.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

3

the software field. A multiple case study was conducted, as more than one case
was available for replication. Several companies use the hybrid model and might
encounter the problems identified in this study. The study relied upon two different
sources of evidence: documents and interviews. The case study was relevant
because it provided in-depth answers to the theoretical issues formulated in the first
part of the paper. The empirical analysis shed light on the most concrete legal risks
associated with hybrid models, and on the coping mechanisms used to navigate
such challenges.

2. THE PROTECTION MECHANISMS

Proprietary and open source software models possess very different characteristics
and work in very different ways. When both mechanisms are used in the same
software package, the divergences can lead to unavoidable conflicts and legal
risks. To understand where the potential controversies might arise, it is important to
first understand the ways they function within this model.

2.1. The Proprietary Model

A major characteristic of proprietary software lies in the way that computer
programs are developed. Specifically, the proprietary model favours a centralised,
closed type of development where the product is fully “built in-house”. As a
consequence, the developing firm usually owns and retains all the rights over the
software it produces.

Another important feature of the proprietary software model lies in the way software
is distributed to users. Generally speaking, licensing is central to the exploitation of all
types of intellectual property rights. In software licensing, the IP holders retain
ownership, but grant the licensees rights to use the software subject to certain
restrictions. The type of restraints placed on users differs between proprietary and
open source software, and is one of the main points of contention in the closed-
open software conflict.2

Proprietary software companies use various types of end user licensing agreements
that provide the licensees with limited rights to use the software for specific purposes.
For instance, both the copyright and the patent regimes tie the license price into the
usage restrictions.3

Under the proprietary model (or “closed-code” model) IP owners do not make their
source code available to end users, and the product is distributed only in object
code form. The rationale behind this trend is that source code contains valuable
trade secret information that cannot be protected under the copyright or the
patent regimes, and therefore should be kept a secret. Neither of these two legal

2 D Evans, & A Layne-Farrar, “Software Patents and Open Source: the Battle Over Intellectual Property
Rights” (2004), 9 Virginia Journal of Law and Technology 10.
3 M Välimäki, The Rise of Open Source Licensing. A Challenge to the Use of Intellectual Property in the
Software Industry (2005), Ch. 2, at 13-49.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

4

definitions provides protection to the structure, ideas, and logic described in the
source code.4 Therefore, it is important to point out some issues surrounding the
debate on the treatment of source code.

First, it should be noted that even though patent rules do not prevent disclosure of
the source code, they don’t require it either. Additionally, the special nature of
software, as well as existing case law and legal dispositions, have all contributed in
drastically curtailing the disclosure requirements for software-related patents. 5
Consequently, it has been a common practice to disclose only the minimum
amount of information necessary in order to meet patent law requirements.6 Due to
the cumulative nature of computer software and the way the code is constructed,
however, access to the source code (or at least to detailed interface descriptions) is
often necessary for developing new programs and fostering innovation. This need is
particularly evident when (as it is often the case) the software product is a
development tool or a component that needs integration adaptability.7

The “closeness” of the proprietary model distinguishes it from the open source
model, and represents a highly controversial aspect in the debate between
proprietary and open source advocates.

2.2. The Open Source Model

The most distinctive features of the open source system are identical to those that
distinguish the proprietary model: the development structure, the licensing scheme
and its relationship to intellectual property rights, and the policy treatment of the
source code.

On the development side, a FOSS peculiarity is the use of collaborative developing
structures that extend beyond the boundaries of a single firm. Open source projects
are controlled by a community of stakeholders and the software is usually
developed by a group of self-organised collaborators.8

Nowadays, the term “open source license” describes several different licenses. In
order to be recognised as FOSS, licenses need certification from the Open Source
Initiative, a non-profit organisation dedicated to promoting open source software.9
The two most frequently used FOSS licenses are the GNU General Public License
(GPL)10 written in 1989 by Richard Stallman for use of programs released as part of
the GNU Project, and the Berkeley Software Distribution (BSD) licence11, forged by Bill

4 See note 2 above.
5 See D Burk, and M Lemley, “Designing Optimal Software Patents”, in R Hahn (eds) Intellectual Property
Rights in Frontier Industries: Software and Biotechnology (AEI Press 2005).
6 See EPC, Article 83, and 35 U.S.C. § 112.
7 RM Ballardini, “The Software Patent Thicket: A Matter of Disclosure”, (2009) 6:2 SCRIPT-ed 207,
http://www.law.ed.ac.uk/ahrc/script-ed/vol6-2/ballardini.asp.
8 See note 3 above.
9 See http://www.opensource.org/.
10 The version of the license currently in use is version 3, released in 2007. See GNU General Public
License, Version 3 (2007) at: http://www.gnu.org/copyleft/gpl.html.
11 See http://www.opensource.org/licenses/bsd-license.php.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://www.law.ed.ac.uk/ahrc/script-ed/vol6-2/ballardini.asp
http://www.opensource.org/
http://www.gnu.org/copyleft/gpl.html
http://www.opensource.org/licenses/bsd-license.php

5

Joy from the University of California at Berkeley. The GPL and the BSD have served as
models for many other FOSS licenses. In particular, it can be said that they gave birth
to two highly influential families of FOSS licenses: the “copy-left” family, derived from
the GPL license, and the “academic families”, derived from the BSD license.12 Each
FOSS licence is based on copyright law. Specifically, FOSS licenses set the
relationship between the copyright holder and the users.13

OSS licenses will be analysed in more details later in this paper, however, it is
important to note that these licenses clearly differ from any traditional type of IP
license. While IP licenses impose restrictions on the use of certain products, the OSS
licenses grant freedom to use the licensed software. Specifically, OSS licenses grant
the royalty-free right to run, modify, distribute, and redistribute modified versions of
the computer program.14 Another essential characteristic of OSS licenses is the
obligation for the licensor to make the source code “freely” available to developers
and users but this “zero-royalty” feature of OSS licenses does not necessarily mean
that OSS licensors cannot profit from selling the code. OSS licenses are non-exclusive:
copyright owners might license their code under an additional license that provides
additional services, such as a warranty to the users.15

Notwithstanding the common characteristics highlighted above, FOSS licenses differ
in several respects. One of the most important distinctions lies in the extent the
license allows commercial exploitation, especially with respect to the possibility to
combine the FOSS code with a company’s proprietary code. The essential nature of
the GPL, for instance, is enshrined in a requirement called “copyleft”:

“You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License”.16

Thus, under the GPL, licensees might be required to disclose their own source code
under an open source license. On the other hand, copyleft licenses are not uniform
in this aspect. For example the Lesser General Public License (LGPL)17 and the Mozilla
Public License (MPL)18 are more permissive than the GPL.

Finally, the BSD and academic licenses in general allow more commercial
exploitation and more flexibility in combining open source with proprietary software.

It is important to keep all this in mind because (as will be explained later) these
differences might be crucial for firms attempting to profit from FOSS products.

12 See note 3 above.
13 Ibid.
14 Ibid.
15 Ibid. See also F Lévêque and Y Ménière, “Copyright Versus Patents: the Open Source Software Legal
Battle” (2007), 4 Review of Economics Research on Copyright Issues 1, at 27-46.
16 See GNU Lesser General Public License, version 2, at http://www.gnu.org/copyleft/lesser.html,
“Terms and Conditions for Copying, Distribution, and Modification”, 2b).
17 Ibid, GNU Lesser General Public License.
18 See Mozzilla Public License Version 1.1. at http://www.mozilla.org/MPL/MPL-1.1.html.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://www.gnu.org/copyleft/lesser.html
http://www.mozilla.org/MPL/MPL-1.1.html

6

2.3. Closed vs. Open Source

This section compares the proprietary and open source software models to shed
light on the benefits and limits each model brings to software innovation. Both
systems possess advantages and disadvantages with respect to software innovation,
and therefore necessitate finding a balance.

2.3.1. Advantages and Limits of Closed Software

Commercial developers and vendors typically protect their software using many
different IP mechanisms, with copyright and patents being the most popular. The
reason for this multilayered type of protection lies in the pluralistic nature of
computer programs.

Computer programs possess several elements, each of which could fall into different
categories of IP laws. Software has a dual nature: on the one hand, it can be
defined as a literal work under the form of source code and object code. On the
other hand, once executed by a machine it is also a functional object. This
configuration allows software to fit within the scope of many different types of IP
tools.

The major advantage of proprietary software lies in the fact that a firm can control
the destiny of its products. This provides companies with the sufficient profit motive to
make their products highly valued by consumers. For example, vendors might try to
make their products backwards compatible with earlier versions, so that consumers
can experience a smooth transition from an older version to a newer one.19

Another strength of proprietary software is that it provides consistent platforms for
running applications. Fragmentation is usually not an issue for proprietary software. In
an industry like software, where network effects are very strong, this consistency is
especially important. For example, developers of proprietary software, such as
Windows, write their programs in a manner that allows them to run on all computers
meeting their specific hardware and operating system requirements (e.g. Windows
ME, Windows 2007, etc…).20

Each individual IP protection mechanism possesses both positive and negative
aspects with respect to software protection. As previously mentioned, the focus here
is on copyright and patents.

For many years, software has been considered a literary work and primarily
protected by copyright law.21 It is undeniable that the software code is expressed “in
writing”. To some extent, copyright law provides computer code with an adequate
level of protection. Copyright prevents third parties from copying the software code

19 See D Evans, and B Reddy, “Government Preferences for Promoting Open-Source Software: A
Solution in Search of A Problem” (2003), 9 Mich. Telecomm. Tech. L. Rev. 313. Available at:
http://www.mttlr.org/volnine/evans.pdf.
20 Ibid.
21 See 17 U.S.C. §102(a) (1988); Software Copyright Directive, Art. 1; see also TRIPs Agreement, Art. 10.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://www.mttlr.org/volnine/evans.pdf

7

(binary and source code) without permission, or using it as an input into a product of
their own. On the other hand, however, copyright presents various shortcomings
when applied to software. In this respect, the major reasons of concern lay on the
copyright scope of protection.

Probably the biggest failure of software copyright is that copyright law extends to
the ‘expression’ of the program in the form of either source or object code, but does
not afford protection to the way the program works, i.e. to the program’s functions
(“idea-expression” dichotomy). On the one hand, by leaving the functional
elements unprotected, copyright creates serious risks of under protecting software.
On the other hand, there are risks that over-protection might arise, as drawing a
border between the literal and functional elements of software is often difficult. This is
especially due to the fact that in computer programs there is a significant degree of
independence between literal and functional manifestations. The software functions
are fully independent from the grammatical (i.e. literal) construction of the lines of
code. In other words, even though the source codes of two programs might look
completely different, such codes can perform the exact same function and
produce the same (or a very similar) set of instructions. This configuration makes it
difficult to discern the literal/expressive from the functional/utilitarian in software.22
Additionally, other problems might arise with software copyright. These can include
the long duration of copyright protection with respect to the software’s short
lifespan, the challenges involved with the definition of “originality” of the code, and
various other difficulties deriving from new technological developments (for
example, the increased use of modularisation and object-oriented designs in
computer programming).23

Copyright shortcomings are partially responsible for the adoption of patent
protection for computer-related inventions. Historically patent protection was not
available for software based on the perception that computer programs were
abstract concepts, and as such did not meet general patentability requirements.
Current doctrine, however, recognises the patentability of computer software (in
particular in the United States and, to some extent, in Europe). 24 By impeding
competitors from writing code that includes any patented aspect of the software,
patents constitute an efficient mechanism for blocking, or at least obstructing,
attempts to duplicate a program’s functionality. 25 Patents can protect the
implementation of algorithms and other creative aspects of software design.

Notwithstanding these advantages, software-related patents possess various
shortcomings. The fact that assessing patentability of abstract technologies such as
computer programs raises quality concerns, and potentially leads to issuing of
obvious, non-inventive patents in the industry. This can create patent floods, hold up

22 For a general discussion on the issue see RM Ballardini, “Scope of IP Protection for the Functional
Elements of Software”, in In Search of New IP Regimes (2010), Publications of IPR University Center, at 27-
62. Available at SSRN: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1599607.
23 See J Lipton, “IP’s Problem Child: Shifting the Paradigms for Software Protection”, (2006) 58 Hasting
Law Journal 2, at 205-251.
24 For more information see note 7 above.
25 R Jordan, “On the Scope of Protection for Computer Programs under Copyright Computer
Programs: The Patent/Copyright Interface”, (1989) 17 A.I.P.L.A. Q.J. 3, at 199-214.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1599607

8

problems, royalty stacking, and blocking patents. It might actually discourage rather
than promote innovation in the field.26

Another possible disadvantage of the proprietary software model refers to the
treatment of the source code. Specifically, the fact that the source code is kept
undisclosed does not allow a technically adept user to fix bugs himself or customize
a proprietary program in ways the vendor has chosen to make the program
available. In this way, the non-disclosure of the source code might impede direct
and indirect competitors, as well as end users, to build upon the program in order to
create further developments. Even though these activities do not usually affect the
vast majority of home users they might be very important for large customers, and in
particular, for promoting further software innovation.27

To summarise, the extent of intellectual property protection that computer software
should receive is debatable. Proprietary models present various advantages, but
also several disadvantages with respect to software innovation. At the same time,
however, it is untenable to argue that no IP protection should be available for
software.

2.3.2. Advantages and Limits of Open Source Software

Depending on the product, its usage, and the market constraints, OSS has specific
properties that can be advantageous or disadvantageous for computer software.

The most remarkable strength of the FOSS model is costs saving. Using FOSS can save
both license and development costs. Furthermore, it can save time for the
component updates and corrections because more free labour is available to
localize and correct defects. It should be pointed out, however, that open source
software is not free software, and it often requires substantial investment in order to
deploy it in the marketplace.28

Another advantage of widely used OSS packages is the generally high quality of the
software. The fact that there is a large community behind the projects guarantees
that bugs are found and fixed quickly. 29 In this sense, another important reason for
using OSS is to attract developers to reduce costs related to having internal support
services.

The fact that the source code is made available to developers and users is another
remarkable advantage of open source software. Openness can enhance welfare in
several ways: it allows others to correct defects and bugs and to customize the
programs by adding more features to the software, designing around it, and

26 See M Lemley, and C. Shapiro, “Patent Holdup and Royalty Stacking” (2007) 85 Texas L. Rev. 7, at
1991-2050.
27 See note 19 above.
28 M Ruffin, & C Ebert, “Using Open Source Software in Product Development: A Primer”, 21 IEEE
Software 1 (2004).
29 See “Use of Free and Open-Source Software (FOSS) in the U.S. Department of Defence” by MITRE
Corporations, Version 1.2.04 (2003).

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

9

promoting further developments. Furthermore, the openness of the code makes it
easier to adapt and reuse it, and ultimately helps software retain value rather than
becoming obsolete.30

On the other hand, the fact that the code is open can also bring some unavoidable
disadvantages, as developers have limited opportunities to earn monetary returns
for their investments. Even though non-pecuniary rewards might provide some
motivation31, the limited economic benefits of OSS can reduce the supply of efforts
devoted to these activities.32 For instance, the limited pecuniary rewards in open
source projects might reduce firms’ incentives to perform costly consumer research
into usability and consumer needs.33

Furthermore, it is worth noticing that proprietary companies tend to avoid digging
into the source code of large OSS projects unless absolutely necessary. Widely used
OSS packages usually include very large source codes, therefore making it difficult
to try to change parts of such code (especially if the programmer is not very familiar
with that particular software). For example, in dealing with bugs in the code most
proprietary companies would look for fixes (e.g. whether there is a newer version of
the software that has been fixed), or check whether the bug has been reported
(and in this way they might find out whether the OSS community is already working
on fixing the bug, or whether a fix has been scheduled for future releases). If these
options are not available they might decide to find a workaround, which might not
mean fixing the bug but rather not using the functions of the software that have the
problem. There are cases where the openness of the code is extremely useful. For
example, when a company wants to make the binary smaller by taking only part of
the source code, or when a company needs to customize the software for internal
use. In a nutshell, the fact that the code is open is definitely a positive characteristic
of open source software, but it is not the most important one of the model.34

From a company perspective, another advantage of OSS is the recruiting process.
The fact that extensively used OSS projects develop large communities means that
there are many developers familiar with using the software tools related to such
projects. Thus, incorporating widely used OSS projects can increase the overall
efficiency of the company. If the recruited developers are familiar with the OSS
software the company is implementing, they will certainly be more productive.35

Theoretically, a fundamental problem with the OSS model is market fragmentation
due to the development of multiple, sometimes incompatible, versions of the same
software. The extent to which open source users take advantage of their freedom to

30 S Maurer, and S Scotchmer, “Open Source Software: the New Intellectual Property Paradigm”
(2006), National bureau of Economic Research.
31 See, for instance, K Lakhani, & R Wolf, “Why Hackers Do What They Do: Understanding Motivation
and Effort in Free/Open Source Software Projects” (2005) in J Feller, B Fitzgerald, S Hissam, & K Lakhani,
Perspective of Free and Open Source, MIT Press, Mass.
32 See note 19 above.
33 Ibid.
34 Interview conducted on 12 October 2011.
35 Ibid.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

10

modify and customize code leads to fragmentation.36 In practice, however, when
OSS is a de facto standard component and has a large user community, it provides
lasting solutions. The advantage is that developing an application on a proven de
facto OSS standard provides companies with better protection against changes in a
supplier’s terms or conditions. With a proprietary solution, changing suppliers is often
not possible because the mitigation costs are usually too high.37

3. THE RAISE OF THE HYBRID MODEL

The above analysis suggests that both open source and proprietary mechanisms are
important to promote innovation in the software field. Indeed, the analysis
exemplifies not only that each model possesses both positive and negative aspects,
but also that the different and often conflicting aims of the proprietary and open
source systems can hamper their peaceful coexistence when both models are
embedded into a company’s final proprietary software product. Discrepancies arise
from their different perspectives, spanning from managerial, economic, and
technology-related, to purely legal matters.

This article investigates what is here termed the hybrid protection model for
computer software. In the hybrid model companies incorporate both open source
and proprietary code into the proprietary software they release to the market.
Specifically, the hybrid model takes advantage of the resources available through
FOSS while adding proprietary features that generate revenue. Potentially, this could
provide equivalent value to traditional commercial software at a lower cost and
with better quality to the end users.38

Specifically, the focus of this paper lies on the legal challenges that can arise from
the hybrid model and the possible coping mechanisms that can help navigate the
risks.

The hybrid model includes different companies’ trends and strategies. On the one
hand, some typical proprietary companies are increasingly including OSS code into
their proprietary software. On the other, traditional OSS companies are starting to
incorporate intellectual property rights into their model. Furthermore, other
companies were born as “pure hybrids” in the sense that they have included both
OSS and proprietary features into their models from their beginnings.

Corporations have launched various strategies as part of these transformations. The
following paragraph provides an overview of some of the mechanisms used by
selected firms operating in the software industry. The companies chosen are highly
representative because they are among the biggest corporations operating in the
computer programs field and because they have been among the first to
implement the hybrid model into their business. This analysis sheds light on the ‘core’
legal risks that might arise from using the hybrid model. It should be noted, however,

36 See note 19 above.
37 See note 29 above.
38 M Karels, “Commercializing Open Source” (July/August 2003), QUEUE, at 4755.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

11

that there are several ways to develop hybrid models and the following samples
represent but a small portion of them.

Three different groups of companies are identified:

1) Traditionally commercial (i.e. proprietary, “closed”) companies
that have modified their fully proprietary protection model in
order to incorporate open source software. Within this group,
the strategies implemented by International Business Machines
(IBM) are analysed;

2) Traditionally FOSS firms that have started to include closed-
types of software. Among this group the Red Hat’s model is
investigated;

3) Purely hybrid companies, i.e. software firms that have started
as a mix of closed/open features. MySQL AB (nowadays
owned by Oracle Corp.) is taken as a representative example
for this group.

3.1.1. Closed Companies Going Open

Proprietary software companies have found that they could generate more profit
and better satisfy their customers by including aspects from open source.
Accordingly, they have embraced an approach based on honoring FOSS while, at
the same time, relying on fees for the use of intellectual property.39

3.1.1. IBM: The Pioneer

IBM was one of the first proprietary companies to change its protection model and
move to a hybrid, closed-open system.

In the 1980s, IBM was one of the most vigorous advocates of strong IP protection for
computer programs. They believed that without strong IP rights, there would not
have been sufficient incentives for firms to invest in software development. At that
time, IBM was distributing programs merely in machine-executable form (i.e. object
code form) and was using several proprietary protection mechanisms, such as
copyrights, patents, trade secrets, trademarks, licensing agreements, and technical
protection measures.40 Certainly, at that time no one would have guessed that two
decades later IBM would have embraced open source software.

However, IBM re-oriented themselves as an open source company, albeit to a
limited degree. It currently contributes over one hundred million U.S. dollars a year to

39 See C Nosko, A Layne-Farrar, & D Garcis Swartz, “Open Source and Proprietary Software: The Search
for a Profitable Middle-Ground” (2005). Available at SSRN:
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=673861.
40 See P Samuelson, “IBM’s Pragmatic Embrace of Open Source”, Communications of the ACM 49 (10),
2006. Available at: http://escholarship.org/uc/item/4xb4t1ps.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=673861
http://escholarship.org/uc/item/4xb4t1ps

12

the development of Linux and other open source software projects.41 With such a
radical reversal, one cannot help but wonder what the possible motivations could
have been. The answer, however, is not very straightforward and includes various
considerations.

3.1.1.1. Possible Justifications

Probably the most obvious justification behind IBM’s change of protection model
relates to the relationship between IBM and its main competitor, Microsoft. Many
companies give the “kill Microsoft” approach as a reason to pursue open source.
Accordingly, companies are willing to invest in software development that might not
generate monetary returns, as these efforts might impede Microsoft’s ability to
extract future profits by monopolizing markets.42

During the eighties IBM was the dominant firm in the software industry. When it
entered the market for personal computers IBM decided not to build its own
proprietary operating system, but to license it from Microsoft, who was a small firm at
the time. In order to ensure a steady supply of programs for the PC platform, IBM
required Microsoft to make interface information available to application
developers. 43 The IBM PC was a huge success and soon became an industry
standard.

This allowed other vendors to offer equivalent technologies, but all were required to
interoperate with software created for the IBM PC. In other words: all the equivalent
technologies were running Microsoft’s operating system.44 Taking advantage of this
situation, Microsoft started to license its operating system to PC developers to
encourage network economies. This enabled Microsoft to obtain monopoly power
for its platform. Meanwhile, Microsoft started to develop Windows 3.x and soon
launched Windows 3.0, which immediately became a phenomenal success in the
marketplace. Microsoft’s platform soon became a de facto industry standard.45

Since then, no operating system has been developed that could compete with
Microsoft’s offering(s). Linux is one of the first operating system with real potential to
challenge Microsoft’s position.46 Therefore, investing in Linux not only allows IBM to be
independent from Microsoft’s licensing terms, but it also increases the chances that
Linux will succeed in its competition with Microsoft in the operating system market.47

41 H Chesbrough, “The Era of Open Innovation” (2003), 44 MIT Sloan Mgmt Rev. 35.
42 See R Mann, “Commercializing Open Source Software: Do Property Rights Still Matter?”, 20 Harvard
Journal of Law & Technology1 (Fall 2006).
43 See note 40 above.
44 Ibid. See also H Chesbrough, “Open Innovation. The New Imperative for Creating and Profiting from
Technology”, Harvard Business School Press (2003), at 93-112.
45 See P Capek, S Frank, S Gerdt, and D Shields, “A History of IBM’s Open Source Involvement and
Strategy”, (2005) 2 IBM Systems Journal 44, at 249.
46 Indeed, other players are present, for e.g. the Mac OS, the iPhone OS, the JavaME, and the Android
operating systems. See Operation Systems market share, September 2011 at:
http://www.netmarketshare.com/report.aspx?qprid=8&qptimeframe=M&qpsp=152.
47 Ibid.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://www.netmarketshare.com/report.aspx?qprid=8&qptimeframe=M&qpsp=152

13

IBM fully entered the software market in the mid-1990s48. However, IBM’s success was
undermined by various factors, not only Microsoft’s platform dominance in key
platform’s markets, but also by the fact that software started to be mass-marketed
and became increasingly commoditized.49

Acknowledging these problems, IBM began thinking of some alternative business
models in order to succeed and quickly discovered that what customers wanted
were open standards, interoperability, and customization tailored to their own
needs.With these priorities in mind, IBM concluded Linux was a better platform to
meet customers’ demands than traditional proprietary operating systems. Thus, it
embraced a semi-open protection model accordingly.50

At the base of this shift in strategy towards open innovation are some of the most
common reasons associated with the use of open source software. Among those,
monetary advantages are probably the most important: OSS is less expensive than
proprietary software and thereby reduces the overall cost that customers pay for
IBM’s software. 51 Furthermore, through an open innovation strategy, IBM can
distribute the costs of designing, developing and improving software among many
contributors. Consequently, there is less need for internal support services. In OSS
projects the customers can become part of the development team, as they are
willing to invest time, money, and energy on improving the software, fixing bugs, and
making the code more robust and extendable. This type of distributed collaborative
development is particularly relevant in a technological field like software, where the
increased complexity of the technology involved and the need to integrate
programs from various sources is essential to create more efficient systems.52

Linux provides also a common platform on which IBM can build and sell special
applications and services. Consequently, IBM currently focuses on selling
complementary hardware and software running on top of Linux (and other open
source programs), as well as integrating other customized services to enterprise
customers.53

Moreover, IBM sells additional complementary proprietary software to the open
source product. 54 The complementary software is usually a proprietary-type of
software that works in conjunction with the open source software.

Finally, an open innovation strategy allows IBM to study others’ innovations allowing
them to perceive opportunities for building new technologies on the open source
base.55

48 It should be noted that software was not at the core of IBM initial business. Instead, IBM initially
focused on developing software merely in order to sell hardware.
49 See note 40 above.
50 Ibid.
51 J West, and S Gallagher, “Challenges of Open Innovation: the Paradox of Firm Investment in Open-
Source Software” (2006), 3 R&D Management 36, at 319-331.
52 Ibid.
53 See note 40 above.
54 See note 39 above.
55 See note 40 above.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

14

3.2. OSS Firms Implementing IP Features

The “hybridization” process of software protection not only involves major changes
from proprietary firms, but it also affects the purely open source companies. Recent
years have seen traditionally open source firms starting to incorporate IP
mechanisms into their protection models. Whether their motives are based on
enhancing profit or whether (as they often claim) they are only a defensive tactic
implemented to cope with the increasing threat from proprietary companies is an
open question. Some answers can be found by analyzing the type of mechanisms
implemented in these companies’ practices. To this end, the next section considers
the example of Red Hat.

 3.2.1. Red Hat: The Pinocchio Approach

Red Hat is an American company and a well-known Linux distribution vendor. Red
Hat began as a purely open source software company, but has gradually changed
its policy to incorporate proprietary features, in this way embracing a hybrid-type of
protection model.

The goal for Linux distributors is to solve one of the major problems of the Linux
development model: overcoming the inconvenience of modularity.56 Distributors do
not integrate and sell the Linux components as a single package like proprietary
operating systems. Instead, the individual components “tend to float around”. This is
due to the fact that Linux (as well as most FOSS projects) does not have one single
developer, but rather group contributors. Therefore, Linux distributors, like Red Hat,
consolidate these pieces in a convenient package and sell them to the
consumers.57

Originally, Red Hat concentrated on generating revenue through supporting
services and packaged products containing a manual and a CD to facilitate
installation. By paying for just one Red Hat Linux package the clients also acquired
the right to install it on as many computers as they wished. This type of policy,
however, brought a problem typical to many open source companies 58 :
inadequate revenues. To overcome this problem, Red Hat drastically changed its
strategy and implemented a model that combines features of the open source and
proprietary frameworks.

In 2003 the company split distribution into two different products: the Fedora
project59 and the Red Hat Enterprise Linux (RHEL)60. Fedora is a traditional open
source project, and is to run experiments and for outside developers to submit code.
RHEL is a Linux distribution system produced by Red Hat and targeted to the

56 Ibid.
57 See R Gabriel, & R Goldman, “Open Source: Beyond the Fairy Tales” (May 2002), Perspectives on
Business Innovation, Ernst & Young, Issue 8.
58 MandrakeSoft that distributed Mandrake Linux, and SCO-Caldera, that distributed OpenLinux, are
but two of many examples of OSS companies that failed due to revenues issues.
59 See http://fedoraproject.org/.
60 See http://www.redhat.com/rhel/.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://fedoraproject.org/
http://www.redhat.com/rhel/

15

commercial market. The code developed in Fedora can be included in RHEL at Red
Hat’s discretion. Even though the RHEL’s source code is made available, the code
computers need to run the operating system is conditional on purchasing a support
subscription. Additionally, following a typically proprietary model, a support
subscription needs to be purchased for each computer.61

Red Hat has also started to use trademarks as a protection mechanism. A major
problem for companies trying to generate revenue from software licensed under the
GPL is that because the source code is freely available, third parties can easily
“compile” it for computers to read, and then resell it without having to bear the
development costs.62 To reduce their competitor’s ability to obstruct its business
interests, Red Hat makes use of trademark protection: another company could
rebuild RHEL from freely available source code, but it would have “to strip out” all
references to Red Hat to comply with trademark law.63

Finally, another intellectual property mechanism that is incorporated into Red Hat’s
model is patent protection.64 Examples of the patents owned by the company within
the field of computer programs include: the European patent EP1312195 “Method
and apparatus for handling communication request at a server without context
switching”, the EP1691276 “System and method for verifying compatibility of
computer equipment with a software product”, and the EP1659493 “Replacing idle
process when doing fast messages”. In the U.S., Red Hat’s patents consist of
US2011066672 “Transaction Sticky Load Balance Policies”, the US2011067007
“Automatic Thread Dumping”, and the US2011249013 “Plug-in Architecture for
Dynamic Font Rendering Enablement” amongst numerous others.

This move came as highly unexpected, particularly considering the company’s well-
known objections to software-related patents. The company has tried to reassure
the public by stating that these patents are mainly for defensive purposes and used
as a ‘trade off’ with proprietary firms that are constantly threatening them for
allegedly infringing their patents. Accordingly, their policy is not to enforce those
patents upon open source developers. This message is clear in the company’s
statement towards software patents:

“Red Hat has consistently taken the position that software patents
generally impede innovation in software development and that software
patents are inconsistent with open source/free software. [...] At the same
time, we are forced to live in the world as it is, and that world currently
permits software patents. A relatively small number of very large
companies have amassed large numbers of software patents. We believe
such massive software patent portfolios are ripe for misuse because of the

61 See note 57 above.
62 J Lerner and J Tirole, “Some Simple Economics of Open Source”, 50 J. Industrial Economics 2 (2000),
197-234.
63 See note 39 above.
64 See also Red Hat press release (June 3, 2005), “Red Hat Calls for Intellectual Property and Patent
Policy reform; Red Hat Commits Significant Resources Towards Fedora Foundation, Global Reform of
Government Public Policy and Advocates as Patent Commons”, at:
http://investors.redhat.com/releasedetail.cfm?ReleaseID=355725.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://investors.redhat.com/releasedetail.cfm?ReleaseID=355725

16

questionable nature of many software patents generally and because of
the high cost of patent litigation. One defence against such misuse is to
develop a corresponding portfolio of software patents for defensive
purposes. [...] At the same time, Red Hat will continue to maintain its
position as an open source leader and dedicated participant in open
source collaboration by extending the promise set forth below. [...]
Subject to any qualifications or limitations stated herein, to the extent any
party exercises a Patent Right with respect to Open Source/Free Software
which reads on any claim of any patent held by Red Hat, Red Hat agrees
to refrain from enforcing the infringed patent against such party for such
exercise (“Our Promise”).[...]”.65

This is but a promise without any legal force and it does not exclude a priori the
possibility for Red Hat to change its strategy at any time. Perhaps (temporary) one
can find security in the general assumption that if companies enforce patents for
competitive reasons (as they often do), it is not in Red Hat’s interest to enforce its
patents. The company would attract too much negative attention compared to the
potential benefits of such action. As already mentioned, however, conditions can
change and so can Red Hat’s policy.

3.3. Pure Hybrid Firms

3.3.1. MySQL AB: The Dual Licensing Approach

MySQL is one of the world’s most popular open source database systems. Originally
owned by the Swedish company MySQL AB (now owned by Oracle Corp.), MySQL’s
hybrid nature lies in its original licensing model. The company used a system of “dual
licensing” by combining proprietary and open source licensing models.

Generally, the dual licensing model mixes together proprietary and OSS
mechanisms, and offers the same software product under both a traditional
proprietary license and an open source license.66 Technically, only one core product
exists, but two licenses are used: one for free distribution and use, and another for
proprietary distribution.67

With dual licensing anyone can download the source code for free and redistribute
it, just so long as the redistributed product is licensed under an OSS license. The
second license removes the open source license’s restrictions and allows purchasers
to distribute it and integrate it with proprietary products. This second option obviously
targets companies planning to customize the product for commercial purposes.
Thus, both licenses allow developers to customize MySQL and redistribute it as part of

65 See Red Hat, Inc., “Statement of Position and Our Promise on Software Patents” at
http://www.redhat.com/legal/patent_policy.html.
66 S Comino, and F Manenti, “Dual Licensing in Open Source Software Markets” (January 1, 2010).
Available at SSRN: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=985529.
67 M Välimäki, “Dual Licensing in Open Source Software Industry” (2003), 8 Systemes d’Information et
Management 1, pp. 63-75.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://www.redhat.com/legal/patent_policy.html
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=985529

17

a larger product. If the larger product is released as open source, no license needs
to be purchased. If the product is distributed in proprietary form, it requires a
commercial license.68

The dual licensing system (and models where OSS is fully embedded and distributed
together with proprietary software in general) includes two major and
interconnected legal risks. One danger is that the OSS license (in the case of
MySQL, the GNU General Public License) can dilute ownership and even eliminate
the possibility to dual license, and the fact that OSS projects with multiple authors
can have conflicting copyright claims poses the other.

The ability to license the product with terms other than open source, however,
requires full ownership of rights to the product. Thus, no hidden liabilities in the form of
code contributions from unknown third parties should remain.69 To clear the rights
and avoid legal risks, MySQL adopted a strategy that allows the firm to fully own the
copyright over both the product and over all its modifications: MySQL not only
develop almost all code in-house, but it also rewrites all the bug fixes and further
extensions and modifications offered by external developers.70

Another way MySQL profited from the dual licensing system was by taking
advantage of the “network effects” typical of database systems. In most cases,
databases need customization to meet the specific needs of buyers. The more
people use a particular package, the more developers become trained in
customizing the system, inevitably leading to more written documentation and the
creation of more software add-ons. This makes the system more valuable to each
user, since trained developers and convenient add-on packages are easier to find
and cheaper to use.71

In the specific case of MySQL, the GPL licensing option encouraged network effects
by creating a group of developers familiar with the product. At the same time this
attracted the interest of commercial users willing to pay, at least in part, because of
the network effects created by the free licensing for non-commercial use under the
GPL. Even though some revenue is certainly lost, (because users who download the
GPL version would have, if required, purchased a license) the lost unit sales can be
recouped through the higher prices charged to commercial users. In this way,
MySQL utilizes price discrimination to effectively separate users according to product
usage.72

68 See note 39 above.
69 See note 62 above. The issue on ownership of rights is also explained in more details later in this
paper, under section 4.1.3..
70 Ibid.
71 See note 39 above.
72 Ibid.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

18

In a recent press release, Oracle Corp. announced the addition of certain close-
type features to the MySQL code.73 This is a clear sign that things are changing and
the MySQL code is not any longer fully open source software.

4. THE HYBRID MODEL FACES ITS LIMITS. SOME EMPIRICAL EVIDENCE

The analysis on the companies’ strategies thus far shows that the hybrid protection
models can lead to several legal risks. Companies utilize open source software either
internally (for internal use) or in commercial products or services. Indeed, the legal
challenges increase when a company fully embeds and releases open source code
together with proprietary software. Solely internal use of open source software, such
as use as part of an internal tool, is usually safe from a legal perspective. Internal use
means that there is no distribution and that no FOSS code is incorporated into the
company’s final product.

Internal use can still be compromised by something as simple as an external
contractor having access to the code. Legal risks become real once the FOSS
program is distributed to a customer, contractor, or otherwise made available. They
become concrete once the open source software incorporates itself as a
component or as a library of the proprietary software developed by the company.
This situation is particularly interesting because it raises a series of challenging legal
questions. Specifically, this article analyses both the legal risks related to the FOSS
licenses (i.e., compliance and compatibility with the FOSS licensing terms, risks
associated with the ‘copyleft’ clause, and ownership of rights related risks), and the
risks related to intellectual property rights (i.e., patent infringement and litigation risks,
dilution of the company’s own patent rights, and lack of warranties and
indemnifications on the FOSS side). The focus is on the risk(s) of the simultaneous use
of FOSS and proprietary software by proprietary companies, and not on the risks
posed by IPRs (especially patents) to the FOSS development. This last issue has been
extensively discussed in literature, and therefore, it is not the intention of this paper to
further reiterate it.

Even though this article addresses the legal challenges involved, it is worth
mentioning that other risks can arise from using hybrid protection models. For
instance, the technical risks related to the OSS code (like those related to the
function of the software), the security risks, the availability of support, and the
compatibility of files and formats. Another highly concrete risk is the so-called “open
source community risk”: if a company is perceived to “violate” (in a broader sense
than legal infringement) certain OSS license conditions, or even the “spirit” of that
license, or goes against the generally accepted conventions of the OSS community
in another way, the community may react against the company itself. The
community can include not only active participants of the open source movement,
but also employees of the company, employees of the company’s clients, or the
suppliers of the company. Overall, the community risk can attract lot of negative
publicity to the company.

73 See Oracle’s MySQL Blog, “New commercial extensions for MySQL Enterprise edition”, at:
http://blogs.oracle.com/MySQL/entry/new_commercial_extensions_for_mysql.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://blogs.oracle.com/MySQL/entry/new_commercial_extensions_for_mysql

19

An empirical study under the form of a case study research composes this section. A
case study analysis was chosen because an in-depth investigation was needed to
provide a holistic understanding of the phenomenon. To this end, the case study
relied upon a qualitative-type of analysis. A quantitative technique would have
potentially obscured some of the important information that needed to be
uncovered, such as whether the hybrid protection method is efficient and what kind
of specific problems it poses in practice. The theoretical focus (i.e., the object) of the
study was the problem(s) encountered by commercial companies implementing
hybrid models of protection for their software products. The subject of the study was
exemplified by representative companies who operate in the software field. A
multiple case study was conducted, the reason being that more than one case was
available for replication: several companies use the hybrid model and may
encounter the problems investigated in this study.74

The nature of the project and the type of research questions investigated justified an
‘intrinsic’ and ‘collective’ case study. In other words, a study where the researcher
has a personal interest in the case, and where a group of cases or objects are
studied. The case study intended to generate new understandings, rather than
answer one (of a few) specific question.75 The questions posed to the companies
included:

- General questions, such as ‘how’ do companies combine FOSS code with
proprietary software? ‘What’ are major advantages and disadvantages for
incorporating hybrid models (FOSS in particular) with a company’s proprietary
model? ‘What’ are the reasons for choosing certain FOSS packages? ‘What’
are the reasons for a company’s customers for specifically asking not to
incorporate FOSS pieces of code into the company’s proprietary software?

- Specific questions on the potential legal risks of using hybrid models, such as
‘how’ difficult is it to review and interpret the OSS licenses terms? ‘How’ do
these difficulties challenge compliance with all licenses used by a company?
‘How’ concrete is the risk of “contaminating” a company’s proprietary code
that becomes associated with the ‘copyleft’ clause, and for ‘what’ reasons?
‘How’ concrete are legal risks from the fragmentation of rights (for example,
copyright) in FOSS projects? Is FOSS’ rights fragmentation an advantage or
disadvantage for a proprietary company implementing hybrid models?
‘How’ do companies perceive the risk that certain FOSS packages might
expand to include proprietary applications? ‘How’ much, and in ‘what’ way
does the incorporation of open source code into a company’s proprietary
software affect the risk of IP (in particular patent) infringement and litigation?
‘How’ concrete is the risk for the dilution of a company’s patent rights, and

74 For more information on case study research see: R Yin, Case Study Research: Design and Methods,
Volume 5 of Applied social research methods series, Sage Publications, Inc., Forth edition (2008); R Yin,
Applications of Case Study Research, Sage Publications, Inc., Third edition (2011). See also R Stake, The
Art of Case Research, Sage Publications, Inc., First edition (1995). See also W Tellis, “Introduction to Case
Study”, 3 The Qualitative Report 2 (1997) at: http://www.nova.edu/ssss/QR/QR3-2/tellis1.html; W Tellis,
“Application of a Case Study Methodology”, 3 The Qualitative Report 3 (1997), at:
http://www.nova.edu/ssss/QR/QR3-3/tellis2.html.
75 See, for instance, Stake (1995) above.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://www.nova.edu/ssss/QR/QR3-2/tellis1.html
http://www.nova.edu/ssss/QR/QR3-3/tellis2.html

20

what factors require consideration when addressing the problem? ‘How’
relevant is it that several FOSS products do not provide warranties or
indemnifications when a company decides to choose between a proprietary
and FOSS version of a component, and what are the justifications behind
each option?

- Specific questions on possible coping mechanisms to navigate the legal
challenges associated with hybrid models, such as ‘what’ kind of policy
procedure and processes should a company implement to review the
licenses it plans to incorporate? To ‘what’ extent does the risk of
contamination of a company’s proprietary code associated with the
‘copyleft’ clause affect the decision of a company to incorporate GPLed
code (or similar types of licensed code) or not? ‘What’ kind of coping
mechanisms can (if any) a commercial company using hybrid models
implement to reduce the risks associated with the fragmentation of rights in
FOSS? ‘How’ can a company effectively monitor and prevent the possible
infringement and litigation risks associated with the hybrid models in general,
and with the incorporation of open software code into the company’s final
proprietary software in particular? ‘How’ can a company effectively monitor
and prevent possible dilutions of its own patent rights when it releases
software under FOSS licenses?76

To select the subjects of investigation, an information-oriented technique rather than
random sampling was used. 77 The companies were chosen for their
representativeness with respect to the overall purpose of the study’s research
objective (i.e., they were ‘key’ cases) and to maximize what could be learned in the
period of time available for the study. Specifically, the study considered six cases,
composed of one consultancy company and five software companies. These
specific cases were chosen for the following reasons:

- The field of operation of the companies: they were all companies whose
main business lay in software, i.e. companies whose innovation was based on
the software they developed as opposed to companies that used software
indirectly. The consultancy company operated specifically in the field of FOSS
for proprietary companies, and therefore, considered a valuable source of
insightful information from a more neutral perspective.

- All the companies implemented or dealt with hybrid models of protection.

- Key people working at these companies were well-informed experts on the
research object and in possession of important knowledge.

The size of the companies and their geographical areas of operation were not
regarded important factors in the selection of the cases.

76 For more information see Appendix V: “Interview Questions, Software Companies Implementing
Hybrid Protection Models”.
77 See note 74 above.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

21

The study used two different sources of evidence: documents and interviews. Other
sources of evidence usually considered in case study research such as, archival
records, direct observation, participant observation, and physical artifacts were not
relevant for this study.78

The documents used were mostly academic literature (legal and economics), case
law, legislations, publicly available companies’ policies in the fields of intellectual
property and open source, companies’ websites, and newspaper articles.

Interviews were the most important source of information for the study, and followed
an open-ended format.79 All the interviews were conducted during the autumn of
2011. Key respondents were asked to comment on the research questions from the
perspective of their own company, but also and more importantly, based on their
extensive knowledge of the field. The respondents were free to propose solutions or
provide insights into the subject matter, as well as to corroborate evidence obtained
from other sources. Indeed, this ‘open’ method expanded the depth of the relevant
data gathered.

A draft report was written based on both the documents consulted and the answers
received in the interviews.80 All the participants in the study then reviewed the report
to verify the accuracy in reporting their answers, as well as the overall conclusions
and observations. Several external peers then critically challenged the results and
provided relevant feedback in a discussion regarding the report. This process
enhanced the accuracy of the case study.

The anonymity of the people interviewed and their respective companies was
necessary due to the participants’ consideration of the topic as being both
controversial and confidential. As a compromise, a cross-case analysis was
composed instead of a single-case report.81 The case study report does not portray
any single one of the companies interviewed, but rather a synthesis of the lessons
learned from all of them. Accordingly, none of the cases are presented as single-
case studies. Instead, examples from the cases are discussed under each research
topic section (i.e. ‘Compliance and Compatibility’, ‘Reciprocity of FOSS Licenses’,
‘Ownership of Rights’, ‘Patent Infringement and Litigation’, ‘Dilution of the
Company’s Own Patents’, and ‘Lack of Warranties and Indemnifications’).
Furthermore, there are two sub-sections in each section: ‘Concerns’ and ‘Coping
Mechanisms’. Under the section ‘Concerns’ theoretical frameworks are discussed,
while the ‘Coping Mechanisms’ section presents data from the empirical study. In
addition, the research topic sections ‘Reciprocity of FOSS Licenses’ and ‘Patent
Infringement and Litigation’ include two additional sections: ‘Free and Open Source
Software Litigation’ and ‘Patent Litigation on FOSS’. Relevant case law on FOSS and
copyright and on FOSS and patents is discussed in these sections.

78 Ibid.
79 Ibid.
80 See Yin (2008), note 74 above, at 141-167.
81 Ibid, at 170-173.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

22

4.1. Licensing-Related Concerns

A major set of legal problems associated with the hybrid protection model includes
licensing-related issues. The following paragraphs focus on compliance with the OSS
licensing terms and the compatibility among the licenses, the issues related to the
‘copyleft’ clause, and the ownership of rights-related problems.

4.1.1. Compliance and Compatibility

Concerns

One main point of concern with the hybrid model is the compliance and the
compatibility between the OSS and the proprietary licenses’ terms and conditions.
Two separate sets of problems should be distinguished: on the one hand, problems
might derive from the use of both proprietary (either third parties’ proprietary
software or the company’s own proprietary licensed code) and OSS licensing
models; on the other hand, incompatibilities might arise between OSS licenses
themselves. Although the increase in the number of open source licenses has
improved firms and project leaders ability to find models that better suit their needs,
such a multiplication has also led to the creation of licenses that are incompatible
with others. Ironically, this might distort the original purpose of open source software
by limiting, rather than encouraging, the reuse of code.

Coping Mechanisms

The companies interviewed cited compliance with the obligations imposed by
licenses to be the biggest and most concrete reason for concern. The basic
difference between commercial licenses and FOSS licenses is the fact that with the
FOSS licenses the terms cannot be changed, while in a commercial set up, there is
usually some room for negotiation on the licenses’ terms. To minimize the license-
related risks all the companies agree that it is extremely important to build a solid
design of the architecture and principles around the types of licenses the company
plans to incorporate (e.g. where should the company include GPLed components
and where it should incorporate components licensed under more permissive OSS
licenses). In accordance with this consensus, all the interviewed companies affirmed
to conduct some sort of compliance and compatibility checks of the licenses
included in their models. The medium and large companies all had an internal
procedure for assuring compliance of the licenses in use. Even though the start-ups
and small companies interviewed did not have well-structured policies on the
matter, they usually had at least one person in-house responsible for scrutinizing the
licenses’ compatibilities and compliance with the licenses terms.

According to some of the companies, a very important requirement for choosing
certain OSS packages instead of others is the compatibility of the OSS licenses with
each others, as well as third parties’ proprietary code and the company’s own
proprietary software licenses. A common problem most of the companies reported
in the licenses’ review process was the difficulty in interpreting the OSS licenses’

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

23

terms. This was attributed to several reasons: the language of the licenses per se, the
fact that multiple versions of the licenses can exist for the same piece of code,
thereby making it difficult to detect which version actually applies, and the fact that
the same OSS code is often licensed under several different OSS licenses, often
stating different rules and making it challenging to understand the applicable
principles.

Only some of the firms acknowledged conducting further checks on the licenses’
terms every time the FOSS packages receive updates. One company was very
aware of risks involved with possible changes to the licenses in the FOSS packages.
While reviewing the licenses included in an FOSS package the company was using,
the company discovered the package was extended with certain proprietary
features. As the company was using these features, it found itself in a situation of
either having to change the FOSS package or having to pay the license fees for the
proprietary parts of the code. As the particular component was not an essential part
of the company’s product, the decision was made to remove the full package and
substitute it with another FOSS component. The company reported that after this
experience, they introduced a more thorough review of the licenses’ terms.

4.1.2. Reciprocity of FOSS Licenses

Concerns

The license restrictions of the open source software have a clear impact on a
proprietary company’s strategy. One of the biggest risks is that a companies’
proprietary code will be “forced” open. The risk appears particularly high with the
‘copyleft’ licenses in general, and with the GPL in particular.

The ‘copyleft’ licenses are typically quite restrictive when it comes to combining
proprietary and open source types of software. According to the GPL, if a piece of
code that in whole or in part contains or is derived from an OSS code or any part
thereof is distributed or published together with another (proprietary) software, the
source code of the entire final product must be made available and licensed under
the terms of the GPL. 82 In other words, if a company combines GPLed software with
its own developed proprietary software, the question comes down to whether or not
the result is published “as a whole work”. Technical issues will probably determine
what is considered as “a whole”, like how closely the programs interact, how they
are linked together, and how the proprietary program loads with the GPL-licensed
code. On the other hand, if the proprietary code that a company combines with
the GPL code is apparent and recognizable as an independent and separate work,
such code might be able to remain free of the GPL “taint”.

82 See note 10 above.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

24

Furthermore, the GPL includes also specific patent clauses83 with the intent “to avoid
the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary”84. In other words, incorporating
code originally acquired under a GPL-type of license might dilute possibilities for
commercialization and ultimately compromise the company’s IP rights.

The BSD and academic licenses give more flexibility and opportunity for commercial
exploitation. Under the BSD-type of licenses, licensees can generally distribute their
derivative works without any obligation of source code disclosure. This means that
licensees are free to integrate FOSS code (as well as modifications of the code) into
proprietary software, and then redistribute the whole piece of software under
proprietary licenses.

Free and Open Source Software Litigation

Problems related to the enforceability of the FOSS licenses have become a hot topic
of discussion in recent years, especially with the uncertainty surrounding the
application of the FOSS licenses’ principles. In an already risky and difficult corporate
environment, companies are attempting to minimize their potential liabilities, and
one way of doing this is by reducing the companies’ legal risks.85

Most GPL cases thus far have been on copyright issues focusing on failures to
comply with the source code’s distribution requirement. In general, the retention of
the copyright for the original code allows the enforcement of the FOSS licenses: the
original developer retains the copyright for the original program and subsequent
developers retain the copyright(s) on their improvements. If one does not comply
with the license it terminates and it becomes impossible to copy, modify, distribute,
or redistribute the code without violating the owners’ copyrights.86

In the US, court cases on the interpretation of the FOSS licensing terms started to
appear in early 2000. For instance, Palnetary Motion vs. Techsplosion (2001) 87 ,
Progress Software Corp. vs. MySQL AB (2002)88, and Computer Associates vs. Quest
(2004)89 all centered on the enforceability of the GPL licensing terms. Even though
they followed different paths, all decisions presumed that the GPL terms are binding.

83 For instance, see clause 7 of the GNU General Public License, version 2:
http://www.gnu.org/licenses/gpl-2.0.html and clause 11 of the GNU General Public License, version 3:
http://www.gnu.org/copyleft/gpl.html.
84 The preamble of the GPL version 2 explained the motivation behind the patent clause: “[…] every
program is threatened constantly by software patents. States should not allow patents to restrict
development and use of software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could make it effectively proprietary.
To prevent this, the GPL assures that patents cannot be used to render the program non-free.” See
GNU General Public License, version 3.
85 See A Guadamuz, “Legal Challenges to open source licenses”, (2005) 2:2 SCRIPT-ed, 301-308.
86 See GNU General Public License, Version 3 (2007), note 10 above.
87 Palnetary Motion, Inc. vs. Techsplosion, Inc. (2001) United States Court of Appeal for the Eleventh
Circuit 261 F.3d 1188.
88 Progress Software Corp. vs. MySQL AB (2001), Civil Action No. 01-11031 PBS.
89 Computer Associates, Inc., vs. Quest Software, Inc., et. al. (2004) No. 02 C 7421.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/copyleft/gpl.html

25

SCO vs. Linux90 are a series of legal disputes between the company SCO Group (a
well known software developer of the UNIX related products) and several Linux
vendors and users, including IBM, Red Hat, and Novell. Since 2003, SCO has claimed
that these companies infringed upon SCO’s intellectual property on the UNIX kernel.
Despite the fact that outcomes for some of SCO’s cases are pending, they certainly
increased the financial importance of all ‘copyleft’ licenses.91

Many of the court proceedings refer to the Software Freedom Law Center (SFLC).
Launched in 2005, it provides pro-bono legal representation and related-services to
non-profit developers of free and open source software. Among the lawsuits filed by
the SFLC are the BusyBox-related litigations: starting from 2007, the SFLC filed a series
of copyright infringement suits against various defendants on behalf of BusyBox’s
principle developers, Erik Anderson and Rob Landley. They claimed violation of the
GPLv2. Lawsuits were filed, among others, against Monsoon Multimedia Inc., Xterasys
Corp., High Gain Antennas LLC, Verizon Communications Inc., and Cisco System Inc.
All the cases centered on the failure of the infringer to distribute the source code
under the terms of the GPL license. Most of the cases ended in settlements and with
the defendants agreement to start distributing in compliance with the license and
paying the corresponding fees.

A complex but interesting dispute is the Jacobsen v. Katzer case92. The dispute
involved copyright and patent issues (the patent issue, however, was subsequently
removed from the case), as well as Digital Millennium Copyright Act and
‘cybersquatting’ issues. The importance of this case lies in the CAFC strengthening
artistic license agreements by affirming (for the first time in history) that such licenses’
violations equates copyright violations. Even though the reasoning was limited to the
artistic license and subsequent interpretations of each open source license will
depend on its precise provisions, this decision has strong repercussions for FOSS
licenses in general.

In Europe, Germany has developed what is perhaps the most comprehensive body
of FOSS-related case law. This is partly due to one important project that was
launched in 2004 by a German programmer, Harald Welte: the GPL-Violations.org93
project. The purpose of the project was to track down and prosecute violators of the
GPL. Since 2004, GPL-Violations.org claims to have enforced over one hundred
actions that were successful in either settling or obtaining judgments. The most
relevant cases include: the Welte vs. Sitecome Germany from 200494, the Welte vs.
D-Link95 from 2006, and the Welte vs. Skype96 from 2008. The first two cases confirmed

90 These cases included: SCO-Caldera vs IBM (2003) US District Court District Court of Utah, No. 2-03-cv-
294; SCO-Caldera v DaimlerChrysler (2004) Oakland Country Circuit Court, Michigan, No.: 2004-056587;
SCO-Caldera v AutoZone (2004) US District Court District Court of Nevada, No.: 2-04-cv-00237-RCJ-GWF;
Red Hat vs. SCO-Caldera (2004) US Federal Court District of Delaware, No: 1-03-cv-772; SCO-Caldera
vs. Novell (2004) US District Court District Court of Utah, No.: 2:04cv0139. All the legal documents related
to the cases can be found at: http://sco.tuxrocks.com.
91 See note 85 above.
92 Jacobsen vs. Katze (2008) Federal Circuit, No.: 2008-1001.
93 See http://www.gpl-violations.org/.
94 In Re Welte vs. Sitecome Germany, District Court of Münhen I , No 21 0 6123/04 (2004).
95 In Re Welte vs. D-Link Germany, District Court of Frankfurt am Main, No 2-6 0 224/06 (2006).

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://sco.tuxrocks.com/
http://www.gpl-violations.org/

26

that failure to provide source code originally licensed under the GPL is a violation of
the GPL’s terms, and ultimately warrants legal action. In the Sitecome’s case the
court granted a preliminary injunction against Sitecome for failing to provide the
source code under the terms of the GPL. Specifically, the Court rejected the
defendants’ claims that it had not agreed to the GPL and that the plaintiff had
waived all rights to the code by distributing it under the GPL. In the D-Link case the
court affirmed the validity of the GPL terms under German law and ordered D-Link to
reimburse GPL-violations.org for the enforcement expenses. This was one of the first
rulings on damages arising from a GPL violation. Finally, in Welte vs. Skype, Skype sold
third-party hardware on its website unaccompanied by the source code or a copy
of the license. Skype tried to remedy this by providing links to both the source code
and the license, but this was insufficient. According to the Judge: “If a publisher
wants to publish a book of an author that wants his book only to be published in a
green envelope, then that might seem odd to you, but still you will have to do it as
long as you want to publish the book and have no other agreement in place”97. In
other words: full compliance with the GPL is needed.

As shown, all the existing case law has focused on the distributor’s failure to make
available certain FOSS code, and not on the allegedly “tainted” or “contaminated”
company’s proprietary code.98 When companies have been found to distribute in
breach of the GPL licenses’ terms, they have been asked to either start distributing in
compliance with the GPL (and pay some license fees) or to stop distributing but not
to distribute their proprietary code under the GPL.

It should be pointed out that it appears to be a widely accepted procedure among
FOSS right holders to initially attempt to find a reasonable deal with the alleged
infringer. Usually the right holder would ask the company in violation to comply with
the license before initiating any legal proceeding. For instance, In FSF vs. Cisco99 FSF
initiated legal proceedings after several attempts to elicit compliance with the
license terms, and several refusals by Cisco in taking any action.

Coping mechanisms

The legal risks associated with the reciprocity of the FOSS licenses in general, and the
copyleft clause in particular, have been reported as highly challenging and one of
the most concrete risks associated with the hybrid model. To reduce such risks,
companies have developed different coping mechanisms. Many of the interviewed
companies shared a common practice: to avoid using OSS packages which
includes GPL or copyleft-type of licenses. Some companies included GPLed (or
GPLed-type) code, but only for OSS tools they used internally. These companies
ensure that pieces of GPLed code are not distributed to the customers. One of the

96 Welte vs. Skype Technologies SA, Higher Regional Court of Munich (2008).
97 This English translation was provided in Harald Welte’s blog:
http://laforge.gnumonks.org/weblog/2008/ (08 May 2008).
98 One exception is the Progress Software Corp. vs . MySQL AB (2001), Civil Action No. 01-11031 PBS
mentioned before in note 88.
99 For instance in FSF vs. Cisco (USA 2008) before initiating legal proceeding, the OSS right holder had
asked Cisco for over two years to start distributing in compliance. The case was settled later in 2009.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://laforge.gnumonks.org/weblog/2008/

27

companies also claimed to receive requests from its own customers to omit FOSS
code from their products, due to risks associated with the ‘copyleft’ clause.

One company avoids incorporating GPLed software into its final product because of
the so called “community risk”. Specifically, the company believes that the OSS
community has tools to detect possible violations of the OSS licenses’ terms. If the
OSS community considers the company non-compliant with the GPL, the company
could attract a lot of negative attention.

Only one company distributes GPLed code with its final proprietary software.
According to the company, interpreting something as unclear as the GPL licenses
(and FOSS licenses in general) in a purely literal, legal interpretation is not accurate.
Instead, it is essential to actively follow interpretations given by different sources,
including the existing and evolving jurisprudence, the more recent interpretations of
organizations like the Free Software Foundation (FSF), and the FOSS community. The
company was well aware of the fact that none of the court decisions have focused
on the possibility that GPL terms might “taint” a company’s proprietary code, and
that the primary aim of any FOSS right holder is to reach an agreement outside the
courtroom. The company justifies this with the fact that the primary aim of the FSF
and the FOSS community is to promote the philosophy and ideas behind the GPL
and open source software. This goal has been achieved by seeking compliance of
the source code distribution both in and out of the courtrooms. For example, there
have been convincing court decisions confirming the ideas and philosophy of the
open source movement, and this promotes the use of open source software in
general. The company maintains that this success is attributable to the FSF and the
FOSS communities focus on implications of the license, such as the “contamination”
of the proprietary code issue. The company is not considering changing this strategy
in the future, due to the long lasting acceptance of this interpretation of the
‘copyleft’ clause. Consequently, it does not possess any back up plan.

4.1.3. Ownership of Rights

Concerns

As mentioned earlier, another concern associated with hybrid models relates to the
ownership of rights. To commercialise software, companies must have undisputed
rights over the product. Open source licenses are copyright licenses, and not
interpreted as the licensor relinquishing rights. In order to incorporate an OSS
licensed piece of software into a proprietary framework, a company must carefully
evaluate the conditions under which such a product had been licensed and
acquire all the rights over it.

Ownership of rights issues might concern the proprietary companies that use OSS
due to the collaborative way open source projects are developed and the resulting
fragmentation of copyright rights. For instance, it might often be difficult to identify
the right owners in a FOSS project, as there might be several holders for a single FOSS

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

28

component. Furthermore, FOSS components might include files without copyright
notices, or notices without proper licenses.

Coping mechanisms

Theoretically, the ownership of rights concerns can be solved in two ways: 1) by fully
re-writing the FOSS code (including re-write all the contributions to the code, for
instance for bug fixes), or 2) by somehow acquiring all the necessary rights over the
software.

The first option, adopted (for example) by MySQL, is safe from a legal point of view.
Fully re-writing the code, however, might be prohibitively expensive as it may involve
complex and costly R&D studies,100 especially since software is constantly becoming
increasingly more complex. As mentioned earlier, digging into big FOSS packages to
change parts of the code can be very laborious and time consuming, particularly if
a programmer is not very familiar with such software.

Another option to solve the issue of rights ownership is to try to obtain all necessary
rights through a specific license or contract. Even though this offers a more
affordable option, such an alternative might not clear all the legal risks. Problems
can remain if the transfer of rights is incomplete if, for instance, because the code
contributor has no authorization to withhold the necessary rights.101

Most of the interviewed firms had not thought the issue through. Some of them
agreed that the ownership of rights poses a risk, but they did not consider it highly
problematic in practice. None of the companies are taking any precautions in this
respect. One of the companies affirmed that proper compliance with the FOSS
licenses included in the packages suffice in clearing all the risks of ownership.

One company considered the fact that in many FOSS projects the fragmentation of
rights is a benefit for the FOSS users (i.e. the companies). The fragmentation of rights
limits the possibility for the copyright holders to act because it is too challenging for a
single FOSS right holder to get consensuses to pursue certain claims. The company
recognizes that this justification does not ‘guard’ against all the risks because
problems with the ownership of rights are highly contingent upon jurisdiction. For
example, in certain jurisdictions it is possible to pursue a claim even in the case of
“partial” ownership.102

4.2. IPRs-Related Risks

Another set of interesting legal challenges relates to the intellectual property related
risks. Specifically, the patent infringement and litigation risks, the dilution of the

100 See M Välimäki, “Dual Licensing in Open Source Software Industry”, (2003) Systemes d’ Information
et Management Vol. 8, No. 1, pp. 63-75.
101 Ibid.
102 See, for instance, the case of Finland: Finnish Copyright Act (2010), Section 6. Available in English at:
http://www.finlex.fi/en/laki/kaannokset/1961/en19610404.pdf.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://www.finlex.fi/en/laki/kaannokset/1961/en19610404.pdf

29

company’s own patents and the lack of warranties and indemnifications from the
FOSS side.

4.2.1. Patent Infringement and Litigation

Concerns

Intellectual property law does not discriminate between proprietary and open
source software for enforcement purposes. Open source is not inherently more likely
to infringe upon software patents than proprietary software, and vice versa.
Software faces potential IP infringements because it is highly complex, the patent
rights in the field are innumerous, many of the patents available are either very
broad, or not novel, or not inventive; therefore even a single small software package
can infringe upon several hundred distinctive intellectual property holdings.103 These
problems are common to all types of software.

The actual risk of litigation (and the directly related risk of getting injunctive relives),
impacts the open source firms in a different way than the purely proprietary and
hybrid companies.

It has been argued that risks of violations are higher on the open source side: open
source developers often operate outside the IP legal framework that dominates the
proprietary software industry because most open source projects lack the
infrastructure to properly monitor their code base. Furthermore, these organisations
often accept code contributions from developers who are unknown to the open
source community and therefore have little control over the origin of the code.104

Additionally, the fact that the source code is open in FOSS enhances the possibility
for competitors to detect infringement. In software, third parties are not always able
to perceive patent infringements from the outer function of the product; sometimes
it might not be possible to detect violations without knowing exactly how the
product works. Generally, the closer the patent is to pure software, the more difficult
it is to see from the outside how the software works. In these cases, open codes can
prove essential to detecting patent infringements.

On the other hand, the risk of litigation appears higher for both purely proprietary
and hybrid software companies than for the purely open source companies. IP
infringement by an open source software package is more likely to incur legal
action from a commercial company, than vice-versa. Even though open source
software development has been halted in specific areas of technology with known
software patents (e.g. MP3 audio, LZW data compression present in the GIF graphics
file formats, etc…) no FOSS organization has yet been subject to legal action for
patent infringement. One important reason for this is that pure open source software
companies are generally ‘not worth suing’. Another is that widely used FOSS projects

103 For more info see notes 5 and 7 above.
104 On this concern, however, it is worth noting that the same problem is found also among proprietary
companies. See, for e.g., M Lemley, “Ignoring Patents”, 2008 Mitch. St. L. Rev. 19, 19-34.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

30

with a large community are more aware about the potential to infringe on existing
claims. In other words, the fact that many people use the same FOSS software lowers
the chances for companies to be hit by a claim.

The issue of patent infringement is particularly complex for companies implementing
hybrid models. One key reason that might increase the litigation risks for hybrid-type
of companies relates to the fact that, as already mentioned, OSS packages often
have several users. This means that if company X succeeds in proving that company
Y is infringing on patents for a certain piece of OSS code, company X can
confidently assume that it can conduct successful legal proceedings against other
companies implementing the same OSS software package as company Y. This
factor might increase the litigation risks for companies implementing hybrid models.
The SCO Group vs. Linux controversies105 launched in 2004 and all the cases starting
from 2010 in the United States over the Java and the Android operating systems
(that will be exposed later in the paper) represent emblematic examples of such
risks.

The more competitive a company is and the bigger the market share it owns, the
higher the risk of being hit by a patent claim. The reason why certain types of
software (e.g. software in phones) are highly litigated is most certainly because they
are associated with highly successful devices. Furthermore, if the devices (in
particular OSS based devices) are delivered directly to consumers the litigation risks
increase because the products become more visible. In other words, successful
consumer products have an increased risk of litigation for companies using the
hybrid protection model.

Finally, it is worth mentioning that in the case of hybrid models (in the same way as
for proprietary software in general), litigation risks depend on the jurisdiction. For
example, it is well know that litigation risks are particularly high in the United States,
due to its long history of allowing the patenting of software. In Europe, the case law
has limits under EPC Art. 52’s exclusions of computer programs “as such” from patent
law.106

 Patent Litigation on FOSS

On the specific issue of FOSS and patents, the existing case law is relatively limited
and mostly comes from the USA.

Barracuda vs. Trend Micro (2007)107 relates to the infringement suit filed by the
antivirus software vendor Trend Micro against Barracuda Networks for Barracuda’s
use of the open source ClamAV product in its network gateway protection devices.
The claim is that ClamAV violates one of Barracuda’s patents, filed in 1995108. Trend
Micro accused Barracuda of infringing its patent directly, contributory, and by
inducement. Barracuda went to a Californian federal court first and filed a lawsuit

105 Caldera Sys., Inc. vs. Int'l Bus. Machs. Corp. (2003) US District Court District Court of Utah , No. 03-CV-
0294.
106 For more information see RM Ballardini, note 7 above.
107 Barracuda, Inc., vs. Trend Micro, Inc. (2007) USITC, No. 337-TA-624, 72 Fed. Reg. 74, 329.
108 US patent 5,623,600 - “Virus detection and removal apparatus for computer networks”.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

31

against Trend Micro109 , seeking to settle the controversy through a declaratory
judgment declaring Trend’s patents invalid. With the help of the FOSS community,
Barracuda is now trying to gather prior art in order to invalidate Trend’s patent.

In 2006 FireStar sued Red Hat for patent infringement in FireStar vs. Red Hat110. The
dispute was settled in June 2008111 with the agreement that Red Hat claims afford
broad upstream and downstream protection for the whole FOSS community.
Microsoft vs. Tom Tom112, saw the software giant accusing Tom Tom’s navigation
products of infringing upon Microsoft’s patents for the FAT32 file system, was settled
in March 2009.

The series of legal disputes related to the Java and Android platforms require
discussion. These lawsuits began in 2010 with Apple vs. HTC113 (Apple claimed that
HTC infringed upon twenty patents in the iPhone’s user interface), with Apple
claiming different patent infringements by the Android open source operating
system. Other Android related lawsuits are Microsoft vs. Motorola 114 , Apple vs.
Samsung115, Microsoft vs. Barnes and Noble116, and Oracle vs. Google117. Specifically,
in this last case filed in August 2010 at the District Court for the Northern District of
California, Oracle claimed willful infringements of certain patents related to the Java
programming language distributed on Google’s developed Android software, and
of some unspecified copyright rights. At the time of writing the cases are still
pending.

Coping mechanisms

Theory

The academic literature suggests that to mitigate the risk of patent litigation, several
coping mechanisms are available to companies. For instance: patent acquisition,
re-engineering sections that allegedly infringe patents (when possible), collecting
and keeping prior art information to invalidate patents either in-house or through big

109 Barracuda, Inc., vs. Trend Micro, Inc. (2007), US District Court Northern District of California (San
Jose) No.: 3:07-cv-01806-MHP.
110 FireStar Software, Inc., vs. Red Hat, Inc., et al. (2006) US District Court Texas Eastern District Court, No.
2-06cv-258.
111 See Settlement Agreement, 6 June 2008, available at:
http://www.redhat.com/f/pdf/blog/patent_settlement_agreement.pdf.
112 Microsoft Corp. vs. Tom Tom NV and Tom Tom, Inc., (2009), US District Court Western District of
Washington at Seattle.
113 Apple Inc., vs. High Tech Computer Corp., a/k/a HTC Corp., HTC (B.V.I.) Corp., HTC America, Inc.,
Exedea, Inc. (2010) US District Court District of Delaware.
114 Microsoft Corp. vs. Motorola, Inc. (2010), US District Court Western District of Washington at Seattle.
115 Apple Inc., vs. SAMSUNG ELECTONICS CO. LTD, et al. (2011) US District Court California Northern
District (Oakland) No.: cv-11846.
116 Microsoft Corp. vs. Barnes and Noble, Inc., et al. (2011) US District Court Western District of
Washington at Seattle.
117 Oracle America, Inc., vs. Google Inc. (2010), US District Court California Northern District (Oakland),
No.: 3:10-cv-3561.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://www.redhat.com/f/pdf/blog/patent_settlement_agreement.pdf

32

projects (like the Open Source as prior art project 118), actively participating in
projects that facilitate better examination and quality of patents (e.g. the “peer-to-
patent” project119, the “patent quality index” project120), or establishing patent pools
with reasonable terms.

On a broader scale, there are several recent initiatives to turn patents into “open
source intellectual property rights”, granting use to all members of the community.121
Commitments to encourage the development of OSS projects, such as patent
holders unilaterally pledging not to enforce some of their patents against users of
certain open source software, are one example of such initiatives. A typical
example of this model was the agreement reached in 2006 between Microsoft and
Novell, where Microsoft announced not to enforce its patents against the version of
Linux distributed by Novell.122 Another initiative relates to patent owners committing
not to sue those adhering to a statement of permitted use. A plan put forward by
IBM in 2005 was formulated along these lines, where the firm announced that it
would release 500 of its patents into a “patent commons” available for the open
source community. 123 Other initiatives aim at coordinating and encouraging
unilateral commitments. For instance, following the aforementioned decision by IBM,
several companies have made similar patent pledges. These companies include
the Open Source Development Lab (OSDL), a non-profit institution financed by large
commercial companies, and dedicated to the promotion of Linux among firms that
now host their patents in a “patent commons”.124 In other words, the OSDL provides
a central location for patent pledges and software patents. Nokia, for one, has
committed not to assert all its patents against the Linux kernel.125 In 2007 the OSDL
merged with the Free Standards Group (anon-profit consortium chartered to specify
and drive the adoption of open source standards) to form The Linux Foundation.
Both organisations narrowed their focus to promoting Linux in competition with
Microsoft Windows.126 Theoretically, patent commons do not only benefit the OSS
developers by providing them with a shelter, but they also reduce the litigation
costs: companies participating in the commons cannot benefit from the protection
offered by the commons unless they agree not to sue other firms or beneficiaries for
infringement.

118 See http://www.linuxfoundation.org/programs/legal/osapa.
119 See http://peertopatent.org/.
120 See http://www.law.upenn.edu/blogs/polk/pqi/faq.html.
121 See, for instance, note 118, 119 and 120 above.
122 See Microsoft News Center, “Microsoft and Novell Announce Broad Collaboration on Windows and
Linux Interoperability and Support” (Nov. 2, 2006), at:
http://www.microsoft.com/presspass/press/2006/nov06/11-02MSNovellPR.mspx.
123 See “IBM Statement of Non-Assertion of Named Patents against OSS”, at:
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf.
124 See www.patentcommons.org.
125 See Nokia Corp. press releases, “Nokia Announces Patent Support to the Linux Kernel”, (May 25,
2005), at: http://press.nokia.com/2005/05/25/nokia-announces-patent-support-to-the-linux-kernel/.
126 See http://www.linuxfoundation.org/.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://www.linuxfoundation.org/programs/legal/osapa
http://peertopatent.org/
http://www.law.upenn.edu/blogs/polk/pqi/faq.html
http://www.microsoft.com/presspass/press/2006/nov06/11-02MSNovellPR.mspx
http://www.ibm.com/ibm/licensing/patents/pledgedpatents.pdf
http://www.patentcommons.org/
http://press.nokia.com/2005/05/25/nokia-announces-patent-support-to-the-linux-kernel/
http://www.linuxfoundation.org/

33

It is worth mentioning that in recent years web initiatives such as Groklaw127 and the
Foundation for a Free Information Infrastructure (FFII)128, have been launched. Their
goal is to increase communal awareness on the issues concerning IPRs and OSS.

Practice

None of the interviewed companies considered that the use of open source
software in their final products enhance (or reduce) the risk of patent litigation.

According to some of the companies, one essential characteristic of the OSS
packages they use is to have a large OSS community as support. Highly used OSS
packages assure companies that the community of users would promptly detect
possible patent claims. Furthermore, these companies were confident that in the
case of a potential patent infringement, a large OSS community would find ways of
dealing with the issue, such as by re-writing the code in question. Most companies
thought that the risk of being hit by IP claims (in relation to the OSS code they
incorporate) is higher if using OSS packages that are, in one respect or another,
unpopular.

One company considered the fact that the open FOSS code does not necessarily
lead to higher litigation risks. According to this company, the fact that in proprietary
software the actual code is ‘closed’ (i.e. not publicly disclosed) can trigger more
litigation. The infringements based on analysis rather than facts (based on the
source code) leaves more room for interpretation.

Most of the companies were not concerned about facing patent claims on the
FOSS code they use. Some companies relied on the fact that their biggest and most
successful competitors will make better targets in any patent claims regarding their
use of FOSS code. These companies affirmed that in such a situation, they would
immediately change the problematic FOSS component. This operation can be
highly expensive and time consuming or pretty simple, depending on the
importance of the component. Only one of the interviewed companies, however,
admitted to regularly monitoring the FOSS packages they are using for potential IP
claims. Another company only follows the biggest infringement cases related to
FOSS and patents.

One company considered that the incorporation of FOSS software into a company’s
model can play a positive role in an alledged infringement case. In legal disputes,
the open source community can gather prior art to defeat claims on the
defendant’s behalf. The active participation of the community depends on the
specific case and on the position and reputation of the alleged infringer.

Most of the interviewed companies shared the opinion that the patent litigation risks
for FOSS within the framework of the hybrid protection model are relatively low:
taking into account that almost every company in the world that produces software
uses certain portions of FOSS, the amount of IP litigation is very minimal. They
generally agreed that the litigation risk is higher when a company delivers its

127 See http://www.groklaw.net/.
128 See http://ffii.org/.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://www.groklaw.net/
http://ffii.org/

34

products directly to the consumers and is very successful. Some of the companies,
however, were not convinced that the litigation risk is different for companies that
implement hybrid models than for those that use only proprietary software or FOSS as
a strictly internal tool.

One company considered the area of industry where the company operates as a
key feature when it comes to patent litigation. The company specifies the
telecommunications sector as the riskiest area of technology for patent litigation.

Another company identified a company’s jurisdiction as an important factor for
patent litigation risks. The United States was considered much more dangerous than
Europe in this regard. For instance, this specific company does not currently own any
patent on the software it produces, but would not consider operating in the USA
without filing some patent application..

Finally, one company opined that patent litigation is an incentive in commercial
disputes; disputes that have their own logic and do not relate to open source
software. The size of companies’ patent portfolios and the commercial situation
among competitors usually plays a part in triggering patent litigation. FOSS does not
play any active or important role in this scenario.

Overall, none of the interviewed companies considered the risk of patent litigation in
particular relation to the OSS part of the code they use, as very concrete and,
accordingly, do not implement any specific coping mechanism on this respect.

4.2.2. Dilution of the Company’s Own Patents

Concerns

Another problem with hybrid models is the dilution of the company’s own patent
rights. Dilution may result from an explicit or implied patent license under the
applicable FOSS license. Determining the patent portfolio’s exposure to the FOSS
licensing model may be difficult. For instance, both the GPLv3 and the BSD license
(i.e. the most used FOSS licenses) fail to mention patents. Notwithstanding the
absence of an explicit patent grant, however, FOSS licenses may include implied
patent grants. These provisions state the right holder (or the distributor), under his/her
authorization, may implicitly grant a license to the recipients of the components to
practice any right holder’s patent claims covered by such component.129

Implied patent licenses can be deduced from any conduct of the right holder that
induces reasonable belief in the existence of such a license. These can include any
written statement of the patent holder (e.g. the wording of the open source license)
and/or the way the patent holder acts. For instance, the fact that the BSD license
grants the right to “use, modify, copy, create derivative works and distribute the
software” might induce reliance based on the statements of the right holder.

129 See A Pugh, and L Majerus, “Potential Defences of Implied Patent License Under the GPL”, Fenwick
and West LLP (2006).

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

35

Furthermore, releasing the code under any FOSS license (which imply that the
software is “free” for everybody to be used, copied, distributed and redistributed),
might, in effect, induce reasonable reliance on an implied patent grant based on
the acts of the patent holder.130

Indeed, the interpretation of an implied patent license is regional, and not all
jurisdictions recognize such a concept as part of their legal regimes. Thus, the place
where the software is released and/or where the patent is granted should also be
taken into account when evaluating the risk of dilution.

Coping mechanisms

Only one of the interviewed companies released products under FOSS licenses. The
company did not consider the risk of dilution as highly problematic. The company
was confident that an accurate and careful internal review on both the explicit and
the implicit patent grants included in the FOSS licenses used, as well as consideration
of the national interpretation of the laws of the country of operation of the
company, successfully minimize risks associated with dilution of patent rights.

4.2.3. Lack of Warranties and Indemnifications

Concerns

The fact that most FOSS providers do not offer the same warranty protections
typically given to commercial products might represent an additional source of
concern when companies consider implementing the hybrid protection model.
Some OSS organizations have proposed such warranties. Hewlett-Packard, has
announced that it will offer legal protection (albeit with rather strict conditions) for its
version of Linux. 131 Similar programs have been implemented by other OSS
companies, such as Red Hat132, Novell133, Hewlett-Packard134, and JBoss135.

Coping mechanisms

Most of the interviewed companies feel this risk is not something specific to open
source software. Generally, companies did not feel safer by using proprietary

130 A Haapanen, “The is No Such Thing as Free Lunch – Implied Patent Grant Under Open Source
Software Copyright Licenses”, Law in The Internet Society (2008), at:
http://moglen.law.columbia.edu/twiki/bin/view/LawNetSoc/AnnaHaapanenPaper1.
131 See Hewlett-Packard Company Website – Terms of Use and Legal Restrictions, at:
http://www8.hp.com/us/en/privacy/terms-of-use.html.
132 See Intellectual Property warranty, Red Hat, Inc., at:
http://www.redhat.com/legal/open_source_assurance_agreement.html.
133 See Linux indemnification program Novell, Inc., at: http://www.novell.com/licensing/ntap/.
134 See Linux indemnification for HP customers at:
http://h71028.www7.hp.com/enterprise/cache/328211-0-0-224-121.html.
135 See JBoss indemnification program at: http://www.jboss.com/pdf/press/indemnification0405.pdf.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

http://moglen.law.columbia.edu/twiki/bin/view/LawNetSoc/AnnaHaapanenPaper1
http://www8.hp.com/us/en/privacy/terms-of-use.html
http://www.redhat.com/legal/open_source_assurance_agreement.html
http://www.novell.com/licensing/ntap/
http://h71028.www7.hp.com/enterprise/cache/328211-0-0-224-121.html
http://www.jboss.com/pdf/press/indemnification0405.pdf

36

software over FOSS alternatives because they felt the availability of specific pieces
of software does not depend on whether the software is proprietary or open source.
More specifically, companies considered that in the event some third parties’
component or tool is hit by a claim, their situation would be the same with an open
source or proprietary component. Some companies indicated that even if the use
proprietary products, companies would be unable to replace specific products if
they were to suddenly become unavailable. Companies in the software field tend to
move on very quickly. In the event this situation occurs, both proprietary and open
source software users will face the same challenges as the other.

One company considered the lack of warranties on FOSS products to be a cause for
concern, but it is certainly not the only reason for disregarding open source software
and opting for proprietary versions. The company maintained that there are risks
associated both with FOSS and with proprietary software. However, depending on
circumstances, there are several reasons for choosing one alternative or the other:
the lack of warranties and indemnifications on the FOSS side is but one of those.
Reasons for companies to opt for proprietary software could be to get some
warranties, but also for maintenance and support. A company’s architecture can
also play an important role in their choice. For instance, if the company’s system is so
inflexible that it cannot change to incorporate FOSS software, they are more likely to
opt for proprietary software. In summary, the interviewed company opined that
there is not a straight answer to the question of whether the lack of warranties on
FOSS is a risk or not..

5. Concluding Remarks and Future Research

The substantial investment made by proprietary software firms in open source
indicates that the nature of competition in the software industry has radically
changed during the past two decades. Not only it is evident that the largely
volunteer software movement has altered the basic nature of the software industry,
but also it appears clear that the FOSS phenomenon has undergone a significant
transformation from its free software origins to a more mainstream, commercially
viable form.

Open source developments have experienced so much success that proprietary
companies now incorporate open source strategies into their protection models,
and very successful open source projects have had business models created around
them. Despite the success of open source software models, it is highly unlikely that
the proprietary software will wither away and die. The recent incorporation of
proprietary features within some of the most prominent open source companies is
clear evidence that IP rights have not decreased in importance during the past
twenty years. On the contrary, it appears more likely that the proprietary and open
source models will continue to co-exist as they have for a long time.

However, what this analysis shows is a shift in the way companies employ these
models in the software industry. Although it remains clear that open source and
proprietary software models will remain distinct, the data provides evidence
demonstrating that in the future software will not receive licenses at either extreme.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

37

The reason for this trend is simple: none of the currently available protection
mechanisms individually succeed as a stand alone source of protection for
computer programs. Instead, a balance of several protection mechanisms,
including strictly IP models and FOSS, can meet the specific, customized needs of
individual companies.

The hybrid model carries a large amount of potential legal risks. By combining legal
theory and empirical research, this paper has provided a comprehensive analysis of
the ‘core’ legal challenges surrounding the implementation of the hybrid model in
the software context, and the coping mechanisms companies can implement in
order to navigate such risks. Specifically, the empirical study confirmed the existence
of all the theoretically formulated legal risks in practice, even though some were
considered more concrete than others. The empirical research showed that the
most challenging risks are those associated with the open source licenses, the
compliance and compatibility with the licensing terms, and the risks associated with
the ‘copyleft’ clause being the most concrete. These risks applied to both large and
small companies. The least risky problems for the interviewed companies were
associated with the lack of warranties and indemnifications on the open source side.
Generally, the companies considered this feature equally problematic for closed
and open source software. The problems associated with the ownership of rights
were issues where companies did not have strong opinions and had not given it
much consideration. The infringement risk was reported quite heterogeneously: even
though all the companies agreed that incorporating open source into their final
products does not enhance or reduce the risks of patent litigation, they provided
different opinions on the reasons and consequences of the infringement and
litigation risks (e.g. how widely the OSS package is used, field of technology,
jurisdiction, etc...). Finally, only one company released software under FOSS licenses
and, was the only participant that could comment on the dilution of the company’s
own intellectual property rights. The company was confident that the risk is minimal
provided there is a thorough review of both the code and the FOSS licensing terms
internally before releasing the final product.

The study showed that none of these methods is fully foolproof per se. Due to
uncertainties surrounding the FOSS environment and the interpretation of the FOSS
licenses, a well structured internal procedure and a solid design of the architecture
and principles surrounding the overall model the company plans to incorporate is
essential to reducing the legal challenges. Accordingly, all the interviewed
companies conduct legal reviews and checks, either through an internal structured
procedure or by delegating such responsibilities to one (or several) in-house staff
members.

Generally, companies did not welcome the idea of a legislative entity to solve these
problems, mainly due to the too slow legislative process in relation to the fast trends
of the software industry. On the other hand, however, most companies felt the need
for more case law and court interpretations.

The specific field of research at the centre of this essay has not been extensively
investigated in previous literature. As mentioned earlier, even though several studies
on the issue of intellectual property and open source software exist, they mostly

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

38

focus on FOSS as a phenomenon or proprietary software individually, and neglect to
investigate the relationship and interaction between the two, the ways open source
software affects companies’ IP policies, and vice versa. Consequently, this case
study relies on a number of theoretical assumptions formulated in the first part of the
paper. Reliance on hypothesis was further enhanced by the still ‘grey’ area
surrounding the interpretation of the FOSS licenses terms. One of the main difficulties
in researching areas with ill-defined legal principles is the lack of clear-cut
interpretations of the norms at hand. It is not realistic to claim that the findings of this
study are applicable to all the companies that implement hybrid types of protection
models. This was not the original purpose of the study nor does it represent its main
contribution. Instead, the aim of the study (both the theoretical and the empirical
part) was to generate new knowledge for strengthening the general understanding
of the problems surrounding the use of hybrid models in the software field. The case
study was relevant because it provided in-depth answers to the theoretical issues
formulated in the first part of the paper. The empirical analyses shed light both on
the most concrete legal risks associated with hybrid models, and on the coping
mechanisms that are used to navigate such challenges.

The exercise conducted in the article was an explorative undertaking about the risks
associated with hybrid protection mechanisms in the software industry. Specifically,
this article limited itself to the legal problems surrounding the model. There is still
much about software hybrid protection models that remains a mystery and warrants
further research. Perhaps the more essential avenue for work in this area lies in the
replication of similar studies among different participants to test the replicability of
the results achieved. Another interesting avenue for research would be to explore
different aspects of the open-closed business model in the software environment.
For instance, the economic or managerial aspects of the problem could be
investigated. The research conducted in this paper constitutes a solid basis for any
further study that might aim at investigating or addressing problems related to the
hybridization of other fields of technology. The biotechnology sector, for example, is
another field where the closed-open innovation model is prominent but remains
unexplored by researchers.

IPR UNIVERSITY CENTER PUBLICATIONS IPR SERIES B,NO 4/2012

Ballardini Proprietary Software vs FOSS

	B4_Ballardini _kansi
	B4_kuvailulehti_ballardini
	Ballardini-ProprietrayVSFOSS_web_IPRUC
	Abstract
	1. INTRODUCTION
	2. THE PROTECTION MECHANISMS
	2.1. The Proprietary Model
	2.2. The Open Source Model
	2.3. Closed vs. Open Source
	2.3.1. Advantages and Limits of Closed Software
	2.3.2. Advantages and Limits of Open Source Software

	3. THE RAISE OF THE HYBRID MODEL
	3.1.1. Closed Companies Going Open
	3.1.1. IBM: The Pioneer
	3.1.1.1. Possible Justifications

	3.2. OSS Firms Implementing IP Features
	3.2.1. Red Hat: The Pinocchio Approach

	3.3. Pure Hybrid Firms
	3.3.1. MySQL AB: The Dual Licensing Approach

	4. THE HYBRID MODEL FACES ITS LIMITS. SOME EMPIRICAL EVIDENCE
	4.1. Licensing-Related Concerns
	4.1.1. Compliance and Compatibility
	Concerns
	Coping Mechanisms

	4.1.2. Reciprocity of FOSS Licenses
	Concerns
	Coping mechanisms

	4.1.3. Ownership of Rights
	Concerns
	Coping mechanisms

	4.2. IPRs-Related Risks
	4.2.1. Patent Infringement and Litigation
	Concerns
	Coping mechanisms

	4.2.2. Dilution of the Company’s Own Patents
	Concerns
	Coping mechanisms

	4.2.3. Lack of Warranties and Indemnifications
	Concerns
	Coping mechanisms

	5. Concluding Remarks and Future Research

